Vlasov-Poisson equation in weighted Sobolev space \(W^{m, p}(w)\)
نویسندگان
چکیده
In this paper, we are concerned about the well-posedness of Vlasov-Poisson equation near vaccum in weighted Sobolev space \(W^{m, p}(w)\). The most difficult part comes from estimates electronic term \(\nabla_{x}\phi\). To overcome difficulty, establish \(L^p\)-\(L^q\) \(\nabla_{x}\phi\); some weight is introduced as well to obtain off-diagonal estimate. also useful when it control higher-order derivative term.
منابع مشابه
The Poisson equation in homogeneous Sobolev spaces
We consider Poisson’s equation in an n-dimensional exterior domain G (n≥ 2) with a sufficiently smooth boundary. We prove that for external forces and boundary values given in certain Lq(G)-spaces there exists a solution in the homogeneous Sobolev space S2,q(G), containing functions being local in Lq(G) and having second-order derivatives in Lq(G). Concerning the uniqueness of this solution we ...
متن کاملThe Kawahara equation in weighted Sobolev spaces
Abstract The initialand boundary-value problem for the Kawahara equation, a fifthorder KdV type equation, is studied in weighted Sobolev spaces. This functional framework is based on the dual-Petrov–Galerkin algorithm, a numerical method proposed by Shen (2003 SIAM J. Numer. Anal. 41 1595–619) to solve third and higher odd-order partial differential equations. The theory presented here includes...
متن کاملPoisson bracket for the Vlasov equation on a symplectic leaf
It is by now well known that many nondissipative continuous systems possess a Hamiltonian structure, which when viewed in terms of Eulerian variables has a noncanonical form. Examples from plasma physics include ideal magnetohydrodynamics (MHD) [1], theVlasovequation [2], the two-fluid equations [3], and the BBGKY hierarchy [4]. A common feature of all these systems is that they possess Casimir...
متن کاملStreamline diffusion methods for the Vlasov-Poisson equation
— We prove error estimâtes for the streamline diffusion and the discontinuous Galerkin finite element methods for discretization of the Vlasov-Poisson équation. Résumé. — Nous démontrons des estimations d'erreur pour la méthode de Galerkin discontinue pour la discrétisation de l'équation de Vlasov-Poisson.
متن کاملBoundary Value Problems for the Stationary Vlasov-Boltzmann-Poisson Equation
We investigate the well posedness of stationary Vlasov-Boltzmann equations both in the simpler case of linear problem with a space varying force field and a collisional integral satisfying the detailed balanced principle with a non-singular scattering function, and, the non-linear Vlasov-Poisson-Boltzmann system. For the former we obtain existence-uniqueness results for arbitrarily large integr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cubo
سال: 2022
ISSN: ['0716-7776', '0719-0646']
DOI: https://doi.org/10.56754/0719-0646.2402.0211